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The Kac Version of the Sherrington—Kirkpatrick
Model at High Temperatures
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We study the Kac version of the Sherrington-Kirkpatrick (SK) model of a
spin glass, i, a spin glass with long- but finite-range interaction on Z¢ and
Gaussian mean zero couplings. We prove that for all f <1, the free energy of
this model converges to that of the SK model as the range of the interaction
tends to infinity. Moreover, we prove that for all temperatures for which the
infinite-volume Gibbs state is unique, the free energy scaled by the square root
of the volume converges to a Gaussian with variance ¢, 5, where y ' is the
range of the interaction. Moreover, at least for almost all values of f, this
variance tends to zero as y goes to zero, the value in the SK model. We interpret
our finding as a weak indication that at least at high temperatures, the SK
model can be seen as a reasonable asymptotic model for lattice spin glasses.

KEY WORDS: Spin glasses; Kac limits; central limit theorems.

1. INTRODUCTION

One of the most disputed issues in the theory of spin-glasses is the question
as to what extent the results obtained for the mean-field Sherrington—
Kirkpatrick (SK) model [SK] are relevant for finite dimensional short-
range spin glasses (for a recent review and interesting discussions on this
issue we refer to [ NS1, NS2]). From the point of view of the mathematical
physicist, this question is not made easier by the fact that the most
interesting results on the SK model (see [MPV]) are in themselves not
mathematically rigorous. On the other hand, there has been considerable
progress in understanding at least the high temperature features of the SK
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model [ALR, FZ], and very recently some very nice probabilistic tools
have been employed that make the analysis of this phase rather easy and
appealing [CN, T1, T2]. One could thus ask the rather modest question
to what extent these high temperature mean-field results are related to the
corresponding lattice models. In standard mean field theory, the clearest
interpretation of mean field results as asymptotic results for a family of
lattice models if given in terms of Kac models [ KUH]. The Kac version
of the SK-model has been considered already in [ FZ], but was not further
studied in the more recent developments. The purpose of this note is to do
this, and to give some quite weak results that show that, at least in the
high-temperature phase, the SK model can be seen to some extent as a
limit of a family of Kac spin glasses.

Let us recall the definition the Kac-SK model. Let g, { —1, 1}, i€ z°
be Ising spins. Let G,J, i, je 7% be a family of i.i.d. random variables with
mean zero and variance 1. To avoid complications, in this paper we only
consider the case where G, are Gaussian, but more general distributions
could be considered. Let J,(i) be a Kac—kernel, i.e,, a positive function
7% - R* such that J (i) = dJ(yz) where jd x J(x)=1 and J has compact
support. Note that the normalization condition implies that 3, J.(i) =
1 +e¢(y) where &(y)]0 as »[0. Then the Hamiltonian of our model is
defined, for any 4 < Z¢ by

HA,y(a)[w]——\T DVL J)Gyo, (1.1)

i,jedA

We define the partition function as

Z 4y plo]=E,exp(—fH 4 (o) w]) (1.2)

and the free energy as

.f/l,y,ﬂ[w] ln ZAyﬁ'[a)] (1'3)

ﬂl/l!

Throughout the paper we will assume periodic boundary conditions for
convenience, although this is not essential. We introduce the quenched
and annealed free energies as 9, ,=Ef, , Jlw], respectively [ ﬂ_
—(1/p 1A InEZ 4, slew]. As is well known (see, e.g., [ Vu, GR, vE]), i
follows from the sub-additive ergodic theorem that for all y >0, for almost
all w,

lim, S L) = lm, /%, 5= (14)
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where here as everywhere in the paper the limit A4 1 Z¢ is understood in the
sense of van Hove. Then our first result can be formulated as follows:

Theorem 1. Forall <1

&=

lim f, g= ——, a.s. (L5)

y10

Remark. From the work of [ALR] we know that the free energy of
the SK model equals to —(f/4) for < 1. Theorem | thus says that in the
high temperature regime, the free energy of the Kac-SK model converges
to that of the SK model in the Lebowitz—Penrose limit. Theorem 1 extends
a result of Frohlich and Zegarlinski [ FZ] proven for ff small enough to the
full high-temperature region.

Our second result concerns the fluctuations of the free energy.

Theorem 2. Let < 1. Assume moreover that f§ is such that for all
y sufficiently small, the Kac-SK model has a weakly unique infinite volume
Gibbs state for all ' <. Then

(i) If y is small enough, there exists a constant ¢, 4 such that

v |AI (.fA,y,ﬂ_le,y,ﬂ) _9) Cy,ﬂgs as ATZ(I (16)

where g is a standard Gaussian random variable and <% denotes con-
vergence in distribution (or “in law™).

(i1) For Lebesgue almost all such §

lim ¢, =0 (1.7)

Remark. We expect of course that (1.6) and (1.7) holds for all

p<l.

Remark. This result must be contrasted to the corresponding result
in the SK model, where [A4] (f,,,, slw]— /% , ») converges in distribution
to a standard normal r.v. we see that on the lattice, for all positive y, the
fluctuations of the free energy are on a much larger scale then in the SK
model, but at least on this scale they tend to zero with y. In some sense,
the fluctuation result in the SK model with the |A|-scaling should be
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considered as some overly refined estimate that one happens to be able to
compute in the mean field model. On the level of the “normal” fluctuations
on the scale \/m our theorem states that the properties in the Kac model
converge to those of the SK model.

Remark. The hypothesis of uniqueness of the Gibbs state is a weak
point in our theorem (strictly speaking, we need less, namely only the con-
vergence of the finite volume state with periodic (or even some other)
boundary conditions to a translation covariant infinite volume Gibbs state
(see [AW] for definition and extensive discussion of this notion)). Let us
recall from [FZ2] that “weak uniqueness” means that the finite-volume
states with any fixed (“non-random”) boundary condition converge to the
same infinite volume measure, almost surely. We can only assert that it
holds trivially in the one dimensional model for all temperatures. In
arbitrary dimensions, it is easy to adapt the proof of Fréhlich and
Zegarlinski [FZ2] of weak uniqueness of the Gibbs state at high tem-
peratures given for potentials of the form |x| = to show that there is a
finite ., independent of v, up to which uniqueness holds. We would of
course expect that S, (y)— 1, as y |0, but to prove this is beyond the scope
of the present note.

The remainder of this paper is organized as follows. In Section 2 we
prove Theorem 1, using a beautiful idea of Talagrand. In Section 3 we
prove Theorem 2, using in part the equally beautiful ideas of Comets and
Neveu.

2. PROOF OF THEOREM 1

The proof of Theorem 1 follows closely Talagrand’s proof in the SK
model that appeared in [ T1]. It relies on three simple facts.

Lemma 2.1. For any £ and y,
IEZA’ "= e|/1| (1 +2(y)) B2/4 (2.1)

Proof. Just compute. [

Lemma 2.2. For any f and ¥,

—1 EZ2
lim 1n< Ay p >=F‘“’° 22
A A ez, 17 " e (22)
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where F 'y“‘/c, is the free energy of the Kac-Ising model (for a precise defini-
tion, see below). Moreover, if <1, then

lim F%, =0 (2.3)

Proof. Again a trivial computation shows that

2
EZ% , ,=L,E, exp<’8 Y Jli—j)loo; +ao)>
i, jed
=[IEZA,y,,,]2[E,,exp< Y Jli—j ) (2.4)
i, jeAd

But the last factor is nothing but the partition function in the usual
ferromagnetic Kac—Ising model at inverse temperature 2. As is well-known
(see, e.g., [ Tho]), by sub-additivity the limit

_ rkac
/EITI'{Z)‘I /),zlA‘ln{E exp( UZEAJ ,-aj>~Fy‘,,2 (2.5)

exists (if the limit is taken in the sense of van Hove) for all 4, all § and all
positive y. (2.3) follows from the Lebowitz—Penrose theorem that asserts
that the free energy of the Kac-Ising model converges to that of the
Curie-Weiss model together with the fact that the latter, given by FgV =
inf (x¥/2 — f~"In cosh(fix)), for <1 is equal to zero. This concludes the
proof of Lemma 2. ||

Lemma 2.3. For all § and all y,

BLfe _Ef. |5x]<2 <_ﬂ£|_> (26)
anp = Elaypl >X¥]S2exp| —mm oo '

Proof, This Lemma is a simple consequence of Gaussian concentra-
tion inequalities (see [ LT], Section 1.1, Eq. (1.6)) which assert that for any
Lipshitz function f of Gaussian r.v.’s,

P/ —Ef] > x] <2exp< e > 2.7)
Lip

where | f|1;, denotes the Lipshitz-norm of f. Just note that f, , 5 is
Lipshitz as a function of the i.i.d. Gaussian random variables G,. Indeed,
a simple estimate yields that
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1
oy sL0] = fa sl 11 < jmf ¥ (601~ [w]
140 61 w] - 6L 1, (2.8)

V2141

that is || fr,,, pllLip < (1 +&(g)/y/2 |4]). Insertion into (2.7) gives (2.6). §

Remark. An eclementary proof of (2.6) in the SK-case (which
generalizes without difficulty to the present situation) can be found in
[BGP]. A similar estimate also holds in the non-Gaussian case, provided
the G, have finite exponential moments. We refer the interested reader to
[T1, T2]. This allows to extend the validity of Theorem 1 to such random
variables.

We now have all the tools ready to apply Talgrand’s idea from [T1]
to the Kac-SK model. The Paley-Szygmund inequality (see [T1]; the
proof of this inequality is elementary) asserts that

2
LBZannd” L g2 141 L5, 4 0(1)])

1
P|Z 4 P
{ A,%ﬂ>2 A,y,ﬂ} 4 [EZi,y,ﬂ 4 (29)

On the other hand,

1
[FD[ZA,V,/?>§ [EZA,y,ﬂ]

=P[1nZA,y,ﬂ—[EanA,y,ﬂ>ln[EZA,y,ﬂ—lEanA,v,ﬂ—lnz:l
In2
Ii fAyﬂ+EFAyﬁ> fAyﬂ+fA7ﬂ /3|A|]

In2
<200 (=141 S Fp= | Ja+e?) 210

where we used that by Jensen’s inequality, InEZ, , ,>EInZ, , 5. Com-
paring (2.9) with (2.10) we find

In2

2
21 pkac
ﬂIAl} <(L+ep))?p [F%+o(1)] (2.11)

E
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and so, in the limit as 41277,

§,ﬂ+§‘<(l+£(y))ﬁ./F;‘f‘;2 (2.12)

Since F ly‘f‘fgz tends to zero with y if #< 1, the claim of Theorem 1 follows. |

Remark. Note that this proof is totally different in spirit than the
usual proofs of convergence of Kac free energies to the respective mean
field free energies. We do not see how such a proof could work here. For
that reason, we have no analogous result at low temperatures (leaving
alone the problem that the existence of the free energy in the SK model is
not known rigorously at low temperatures).

3. PROOF OF THEOREM 2

Theorem 2 is a more subtle result than Theorem 1, as can be seen by
the hypothesis we need. One would expect that this theorem can be proven
along the lines of the Comets—Neveu [CN] proof in the SK model,
however, as we will see there are some notable differences.

The crucial idea in the work of Comets and Neveu is the use of
martingale techniques. Moreover, due to the fact that the random
couplings are chosen Gaussian, it is possible to use continuous time mar-
tingales and employ the convenient and well developed tools from
stochastic calculus (see e.g. [RY]). The same is true in our problem, and
the most elegant way to prove our theorem is by use of (rather basic)
results from stochastic calculus. On the other hand, these techniques may
not be too familiar to many physicists working on disordered systems.
Thus it may be useful to explain the basic ideas of the proofs in a simple
way rather to just cite theorems from the literature. In this spirit, we chose
to stick to a discrete setting as far as reasonable, and to give proofs of the
results needed in an elementary way. In this sense, Lemmata 3.1, 3.2,
and 34 below are immediate applications of standard formulas in
stochastic calculus, and our proofs imitate the standard proofs of these
results in a particular setting.

A second reason for prefering the discrete setting is that stochastic
calculus is essentially limited to the Gaussian case, whereas we expect
similar results for more general coupling distributions (see for example
[Co]). In such cases one may still use martingales, while the infinitesimal
calculus is not available. We comment on this point at the end of this
section.
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The advantage of the Gaussian case is that the couplings can be
represented as a sum

‘ n
Gij:ﬁ Y glk) (3.1)

k=1

where the g,(k) are all independent standard normal random variables,
and n can be chosen arbitrarily. Comets and Neveu [CN] use the
“infinitesimal version” of this decomposition by representing G, as a
Brownian motion B (¢) (at = 1) which corresponds to passing to the limit
n1oo. Using this, we may think of our g,-j(k)/\/;; as finite increments of
these Brownian motions, i.e., g,(k)/\/n= B;(k/n) — B;((k— 1)/n).

According to this representation we introduce the (decreasing family
of) sigma-algebras 7, = 7} =a(g(k), glk + 1),.., g(n)) that are generated
by all the g, (/) with />k We will denote by # =0(B(s), se[, 1]) the
corresponding filtrations with respect to the Brownian motion.

Our principle task in the proof of the CLT is to compute the Laplace
transform

L, y,/i(u) =Lexp(u /Al [ [, "B [E./.A.y,li]) (3.2)

To compute L, , 4zu) we use the following representation of f,, ,—
Ef4,, 5 as a martingale difference sequence, namely

Jars=®asp= 2 fay sk (3.3)
k=1
with
Jar ) =CL a0 gl F Y —ELf 4y | Fi 1] (3.4)
The standard trick now is to compute first

2
Lt =€ ex0 (0 STAT U=y = 1415 F) 39

where F,=F, , , 4 is the conditional variance of the martingale,

Fo= 3 BLf 5 001 Faii] (3.6)
k=1
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Lemma 3.1. For any 4, f, 3, u, we have that

lim L, , ;. u)=1 (3.7)

nt«x

Proof. This is a standard result, and we just give the main idea of the
proof. One writes the right hand side of (3.5) as

u

2
IEeXp u\/ IAI [.f/l,y,/]— [E‘f/l.y,/}] - |A| —Fn
2
= E[E[...E[ e* /M1 Lay 1= G2 AL ELL D1 #] | 7 ]
x U V1 Ly g2 = G A EL sy 2123 | ]

x VTS =R AL g1 #,0) | 7 (3.8)

and to work up the conditional expectations one by one. The point is that
by rather simple estimates, one sees that

o 2 . _
|[E[(,u\/|/t|f/1.yv,,(k) W) |AVELSy . gtk | F00] | j‘k+|] _ 1| <Cn 372 (3’9)

where the constant C depends on ¢ and A. From this (3.7) follows
immediately. ||

The important point is now the asymptotic representation of F, given
in the following lemma:

Lemma 3.2. For any 4, f, p, in distribution,

1 1 _
= d—s ¥ T NE00) 4| FD? O (310)

oo o |41%, 2.

where (-}, 5 denotes the expectation with respect to the finite volume

Gibbs measure where G; is replaced by B(1).

Proof. The main observation is that (we skip all indices referring
to 4, y, f)

SIRY=EL Sy pl Fad —EL S ay g | Ficin]
=F B 1y Egri)( S(g(1),eny gl — 1), glk),....gln))
— flg(h),..., gtk —1), g'(k)..... g(n))) (3.11)
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where [E,, stands for the expectation w.r.t. all the variables g,(k), and
g'(k) is an independent copy of the g(k). Now by Taylor’s formula

fle(),..., glk—1), g(k),..., g(n)) — f(g(1),..., glk—1), g'(k),..., g(n))

of
= kY—g.(k))+R 3.12
;jagy(k) (g5(k) — g5(k)) + R, (3.12)
where the second order remainder R, is a sum over terms of the form
(g k) gy K) — k) (B13)
2gy(k) 0g (k) =7 IR e m '

with f evaluated at some intermediate point. But all what counts is that

’ o iq_lﬁywﬂwl—m)
0g (k) Og (k)| 4]

(3.14)

and that

B 1(845(k) — gy(k) NG mi(k) — & (k)
<c[1+ (g4 (k) + 1 gm(K)1) + 185 (K)| | gmi(k)] (3.15)

with some numerical constant ¢. On the other hand,

7} 1
[Eg(k) A (gy(k) g,,(k)) —1/2<Gi\/ Jg(i—j) 0']>A,y,/3 gij(k)
g (k) 2p 14 n (3.16)

Inserting this leading term and the previous bound on R, into the expres-
sion for F, we arrive, after some similar steps at the representation

1 n
Fn T 412 Z J,{ [E[<0-U>Ayﬂ|‘/k+l]) +”_l/2R(|A|,%ﬂ,n)
nk 1 IAI i, jed (3 17)

where R(]A|, v, B, n) is bounded uniformly in #, but not in 4. To be rid of
this remainder, we are finally obliged to follow Comets and Neveu and
represent G; as the value of a Brownian motion B(f) at t=1. With &,
te [0, 1] denoting the corresponding filtration, the formula (3.10) follows
easily from (3.17). }

The crucial point is now that under the assumption of Theorem 2, the
random variable |4| F, converges to a constant in probability, as 41 co.
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Lemma 3.3. Assume that y, f are such that almost surely, the
infinite volume Gibbs state is weakly unique. Then there exists a constant
¢,, g such that

- :
ATZJ i ,,ZeAJ i—J)E[{0:0,5 4,51 F1)?=c, 5, inProb. (3.18)

Moreover,

¢ p< L I EC00040,07) o, 5 5 (3.19)

ied

where -, ,, s denotes the expectation over two independent copies g, ¢’
of the spin variables w.r.t. the (unique) infinite volume Gibbs measure.

Proof. Just write

Y I i—JNE[K00, 4y 5 Fi1)?

|A| i, jeA
=— Y JNi—NE[K0,0,> o,y 5| 1)
lAl i, jed
J - DI(E a,
|A|sze:/1 l [<00> yp‘l'/']
_(E[<0iaj>oo,y,ﬂ|-9'_r])2] (3.20)

Since the unique infinite volume Gibbs state will be translation covariant,
the first term converges to a constant by the ergodic theorem. Also, the
finite volume states converge weakly to the infinite volume state, from
which we can deduce easily that the second term converges to zero in prob-
ability. Using the Schwartz inequality and the same argument as in (3.20)
in the resulting term gives the explicit representation for the upper bound
on ¢, 4. This yields the lemma. [

Now from Lemma 3.3 and Lemma 3.1 it follows easily (since |A4| F,
is uniformly bounded) that

. ¢y,
}l{l;d L, s(u)=exp <’Tﬂ u2> (3.21)

which implies part (i) of Theorem 2. What is missing is to relate ¢, 4 to the
difference between the quenched and annealed free energies. To do this the
upper bound (3.19) will be important.
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At this point it turns out useful to compare our procedure above to
the approach taken by Comets and Neveu. Following their approach, we
would define

. 1k
By(k)=—¢ Z gyl (3.22)
o=t

which can also be represented by the brownian motion B(k/n). Corre-
spondingly one can introduce Z, , 4(k) as the partition function of the
model where G, is replaced by B,(k). It is easy to see that that Z k)=
Zk)EZ (k) is a martingale in k, ie, E[Z (K)/EZ (k)| % 1=
Z {k—1)/EZ (k— 1), where we have switched to the increasing sequence
of sigma-algebras % =o(g(1), g(2),..., g(k)). Now the idea is to “take the
logarithm” of this martingale, that is to write

Z 4k =exp(/14] M (k) = 14| (M (K))) (323

where M ,(k) is a martingale with zero mean and (M ,(k)) is increasing
(and called the “bracket” of the martingale M ,(k)), and hopefully, con-
verging to a constant as A tends to infinity. In the SK-model, Comets and
Neveu write this formula without the \/l7| and the |A| coefficients and
prove that still (M ,(k)> converges in that case. Then the CLT for mar-
tingales allows them to conclude that M ,(n) converges to a Gaussian and
this gives the desired estimate on the fluctuation of the free energy. In our
case, with y>0, we cannot expect such a result; and convergence of
(M 4(k)> can only be hoped for with that normalization. On the other
hand, with this normalization M ,(k) has no immediate physical interpreta-
tion, in particular it is not f (k) — Ef (k)! On the other hand, the bracket
of this martingale does have a nice physical interpretation, namely,

1400~ £400 =55 ECH () (324)
This follows from (3.23) by taking the log and the expectation on both sides
and recalling that M ,(k) has mean zero. This appears to be a most unfor-
tunate situation: There is a physical quantity that we know to be Gaussian
without control on its variance, and there is another Gaussian quantity
whose variance we control nicely, but we do not know what it represents,
Luckily, there is a link, due to the fact that there is also a different representa-
tion of the bracket. To see how this is derived, write (3.23) in the form

M (k)= 1 In Zalk) VM[<MA(/¢)> (3.25)

N2
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We want that M (k) is a martingale, that is that E[M (k)| % ,]=
M ,(k—1). But

ELM (k)| 1]

1 A N A N
=€l 2,00 1 G+ B0y 1 ) (326)

Sl

Now

E[In Z (k)| #_1]

. . Z k) =2Z k-1 .
:E[]nzA(k-1)|z_l]+E[ln<1+ ”(ZEA(kj(l) )> fk;l]
a7 V[ (ZAK) = Z k= 1)\ o
_an,,(k)+2[E[< 1) > ./fk_,}+Rk

A
= i Mtk =1y -2 k- 1)
I Z‘A(k)—Z‘A(k—n)z . }
—E = I R 2
+2 [( Zk—1) Fre—1 | TRy (3.27)

where R, corresponds to the third order remainder in the Taylor expansion
of the logarithm and is of order n~** and therefore can be made
irrelevantly small by taking »n to infinity (this is completely analogous to
the estimates in the first part of this section. Thus, for M (k) to be a
martingale, we must have that

E[<M 4(k)) | Foo_ 11— M 4(k—1))
SE[KM k)Y — < M4tk —1)> | Fo_y]

1 E [ <2A(k) —Z (k- 1)>2

T4 Z(k—1)

A

Jf;_]] +R, (3.28)

From this we deduce the obvious solution

_Ls [E[<Z”A(1)—Z‘A(1—1>>2
12 Z, -1

(M (k) /7,_1} +0(n~"?) (3.29)

It remains to compute E[((Z ,(/) —ZA(I— INWN(Z (I—1))?].%_,]. But this
goes just like in the previous case, and in complete analogy to Lemma 3.3
we obtain
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Lemma 3.4.

Z <<010'J(1 )gj0j>>/1yﬁ(s)ds

(M (8)) =lim{M ,([n])) =
e hjea (3.30)

J0 |4]

in distribution.
By the same arguments as before, and using that a Brownian motion

By(t) has the same distribution as \/; B;(1), we get that

lim, ECM 4(1)> = j Y EK0000J,(1) 0105 .y 5 5ds  (331)

ied

But by (3.18) and (3.24), this yields

‘ B
LdWxLASE[fhﬁ-fﬁﬁ] (3.32)
From this inequality and Theorem 1 we get the immediate corollary:

Corollary 3.5. Let B,<1 be such that the assumptions of
Lemma 3.3 are satisfied for all f<pf.. Then, for Lebesgue almost all

0<p<p.,
limc, 5=0 (333)

710

Proof. Note that by construction c, 4 is non-negative. Moreover, by
Theorem 1 its integral converges to zero as y | 0. But than ¢, 4 itself must
converge to zero except on a null set. This proves the corollary. |

This also conclude the proof of part two of Theorem 2. |

Remark. Most of the analysis presented in this section can be
carried over to the case of non Gaussian couplings. Namely, instead of
introducing the filtrations according to the decomposition of the Gaussian
(3.1) one may introduce filtrations % ;=a((Gy, (i, j) = (k, [)) (with some
ordering on Z*, etc., and corresponding martingales (see e.g, [AW]).
Except that greater care is then necessary when treating error terms, very
little will change, with one notable exception: we will not be able to prove
the convergence of the quadratic variation F, to a constant. The reason is

that the expression corresponding to (3.10) will read

Fy= |A|2ZIE[<<MJ,(: NI 4] )]
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and the conditioning is breaking the translation covariance properties that
were used in the proof of Lemma 3.3.
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